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a b s t r a c t

The equations of the plane theory of for the elasticity bending of a long strip are reduced by the method
of simple iterations to the solution of a system of two equations for the displacement of the axis of the
strip and the shear stress. If the transverse load varies slowly along the strip, the resolvent equations
reduce to a single equation that is identical to the classical equation for the bend of a beam. When a local
load is applied, the resolvent equation acquires an additional singular term that is the solution of the
equation for the shear stresses under the assumption that the displacement (deflection) is a function of
small variability. The convergence of the solution in an asymptotic sense is demonstrated. The application
of the method of simple iterations to the dynamic equations for the bending of a strip also leads to a
system of two resolvent equations in the displacement of the axis of the strip and the shear stress. These
equations reduce to a single equation that is identical with the well-known Timoshenko equation. Hence,
the procedure for using the method of simple iterations that has been developed can be classified as a
general method for obtaining Timoshenko-type theories. An equation is derived for the bending of a strip
on an elastic base with an isolated functional singular part with two bed coefficients, corresponding to
the transverse and longitudinal springiness of the base.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Simplified models can be constructed by discarding secondary effects in the more “exact” models such as when changing from spatial
theories to two- or one-dimensional theories. However, in many cases, such as in the theory of shells, for example, the problem of neglecting
secondary in the three-dimensional equations is not simple and the essence of the investigation lies in evaluating the accuracy of the
different two-dimensional models, the number of which, generally speaking, is large compared with the initial three-dimensional model.
It has been found1 that exciting theories can be constructed using a single approach, the method of simple iterations. In this case, the
asymptotic estimates (and asymptotic integration) accompanying the simple iterations enable-one to discard the minor terms with respect
to the principal terms, to estimate the rate of convergence of the iterative process, to prove asymptotic convergence and to obtain simple
models of phenomena. All the simplified models (submodels of the theory of elasticity) can deviously be constructed by the method of
simple iterations (the SI method) and an asymptotic estimate of their accuracy can be obtained by the method of asymptotic integration
(the AI method) (we will henceforth refer to the combination of the method of simple iteration and the method of asymptotic integration
as the SIAI method). In other words, if this position is correct, contraction the mapping principle provides the foundation of each of the
above-mentioned methods. Naturally, this method is explained by considering simpler problems.

In courses on the theory of elasticity, the solution of a plane problem for a long strip using a polynomial representation of the stress
function under the implicit assumption that only a slowly varying stress-strain state exists is given instead of the theory of a beam (see Ref.
2, for example). In this paper, the application of the procedure, developed earlier for equations in the shell theory,1 to the equations of the
plane problem of the theory of elasticity for a strip led to the construction of a new theory of a beam, which has already been previously
discussed.3 Application of the same procedure to the dynamical equations of the plane problem for a strip leads to the construction of an
asymptotic theory of the oscillations of the strip, the resolving equation of which is identical with the well-known Timoshenko equation.4

This enables one to assume that the proposed procedure can be used to construct models of the Timoshenko-type in the case of static and
dynamic problems for beams, plates and shells.
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In handbooks on the strength of materials, the action of local loads on a beam is taken into account in the following way. A load,
distributed over a small interval of length, is replaced by the statically equivalent concentrated force, considered as a discontinuity in the
transverse force. In the case of dynamic action, the load is expanded in series in the natural modes of oscillation of the beam. On the basis
of calculated and experimental data, it is considered that, in the case of short beams and local loads, better results are obtained using the
Timoshenko equation, in which the corrections associated with the rotational inertia and the transverse shear of an element of the beam
length are taken into account4:

(1.1)

Here, E is Young’s modulus, G is the shear modulus, k′ is a coefficient which depends on the shape of the cross section, F is the cross-section
area, � is the mass per unit length of the beam, y* is the deflection, x* is the coordinate of the beam axis, t* is the time, and I is the moment
of inertia of the cross-section. There are different recommendations regarding the choice of he magnitude of the coefficient k′: a value of
0.833 (Ref. 4) and, also, a value of 2/3 (Ref. 5) is used for a rectangular cross-section and a value of 3/4 for a circular cross-section; a value
of �2/12 has been suggested but values of 5/6 and 5/(6 − �) (Ref. 6) have also been assumed.

If the differential operator with respect to time is equal to zero in Eq. (1.1), the Timoshenko equation is transformed into the classical
equation for the bending of a beam. This implies that the intuitive Timoshenko theory only has a meaning when applied to dynamic
problems.

From the position of the SIAI method, models of static and dynamic problems are obtained by a single route. According to the method
of simple iterations, the values of an initial approximation are specified. These basic values are introduced into the equations as known
values and the remaining required unknowns of the problem are calculated in terms of them. It can be assumed that setting the values of
the initial approximation corresponds to the introduction of a hypothesis of the type of a straight and undeformable normal in the theory
of thin-wall systems, usually associated with the semi-inverse Saint-Venant method.7 In the SIAI method, a sequence of calculations of the
unknowns is constructed such that the unknowns specified in the zeroth approximation, which are calculated in the first approximation,
have a small correction O(�k), where � = h/l is a small parameter, 2h is the height of the beam (strip), l is its length and k is a positive number
determining the asymptotic of the solution. This enables us to speak of the convergence of the method in an asymptotic sense (limiting
when � → 0). If there is a sequence of applied contraction operators, the required unknown calculated in the first approximation and the
specified unknown in the first approximation when the boundary conditions are satisfied give a model with a dimensional that one less
than that of the initial model. The contraction property is proced using the AI method.

2. Static bending of a strip

We refer a long rectangular strip to the rectangular system of coordinates x*, z* such that 0 ≤ x* ≤ l, −h ≤ z* ≤ h. The strip is bent under
the load q* = q*(x) distributed over the upper edge and directed downwards.

We introduce the dimensionless coordinates x = x*/l and z = z*/h, the dimensionless displacements u = u*/h and w = w∗ along the x* and
z* axes respectively and the dimensionless stresses �x = �∗

x/E, �z = �∗
z/E and � = �*/E (dimensioned displacements, stresses and loads are

denoted by an asterisk).
We will take the equations of the phase problem in the theory of elasticity, which describe the stress-strain state of a strip of unit width

in the form

(2.1)

Here, � = h/l is a small parameter.
We shall seek the solution of the system as follows. Putting

(2.2)

in the first and second equations as the known values of the zeroth approximation, we calculate u0 and �z0. We then calculate �x0 and find
�x0 and �x0 using the elasticity relations. On substituting them into the last two equations of the system, we obtain w1 and �1 in the first
approximation. The process of calculating the following approximations can be continued.

For convenience in the analysis, we will expand the initial approximation (2.2) into three parts

(2.3)

(2.4)

(2.5)

We will refer to the process of calculating the required unknowns, starting out from relations (2.3), (2.4) and (2.5), as the w-process, the
�-process and the 0-process respectively. In the first process, all the required unknowns will be expressed in terms of the value of the initial
approximation w0 as particular solutions of problem (2.1) for the set values (2.3). In the second process, they will similarly be expressed
in terms of �0 and, in the third process, in terms of the arbitrary functions of integration of the problem that is homogeneous in the values
of the initial approximation.
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Calculation of the components of the stress-strain state gives:in the w-process

(2.6)

in the �-process

(2.7)

in the 0-process

(2.8)

Differentiation with respect to x is denoted by a prime. The arbitrary functions of integration u0 and z0 depend solely on x.
The conditions �∗ = 0, �∗

z = −q∗ must be satisfied on the side of the strip z* = −h. There are no stresses: �∗ = �∗
z = 0 on the side z* = h. In

dimensionless form, these conditions are written as

(2.9)

The boundary conditions will be satisfied by the values of the first approximation (2.6)–(2.8). The stress � has the form

(2.10)

The stress �z is calculated using the second equation of system (2.1) and expressions (2.6)–(2.8)

(2.11)

After substituting these stresses into the boundary conditions (2.9), we obtain four equations for determining the functions w0, �0, u0,
�z0. It can be shown that the equations for determining u0, �z0 separate:

and their solutions can be written as

(2.12)

To the equations for determining of �0 and w0, we give the form

(2.13)

By calculating from them that

(2.14)

and substituting this expression into the second equation, we obtain

(2.15)

If the treatment is confined to slowly varying loads, assuming that �2q′′ ∼ �2q, then the second term on the right-hand side of this
equality can be neglected and the resolvent equation for the strip obtained in this manner is identical with the classical equation for the
bending of a beam.

Eq. (2.13) can be looked at in a different way. We assume that the function w0 and its derivatives are functions of zero variability, that is,
application of the operator ∂/∂x in an asymptotic sense is equivalent to the preservation of the differentiable function in its previous form,
that is, to multiplying it by �0. According to this, we represent the final solution of the first equation of (2.13), written in the unknown �0

(2.16)
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and having a small parameter accompanying the derivative in the form of the sum of the particular solution �p
0 = −�3w′′′

0 /2 and the general
solution

referred to a certain perturbation point x = c, in the neighbourhood of which a stress state of the boundary-layer type arises.
Substituting the sum �p

0 = −�3w′′′
0 /2 + �g

0 into Eq. (2.14), we obtain the equation

(2.17)

The dynamic analogues of Eqs (2.15) and (2.17) will be obtained below. At the same time, if

(2.18)

where the point b, which determines the locus of the application of the load, generally speaking, coincides with the point c, the right-hand
side of Eq. (2.15) vanishes and the solution of the homogeneous equation has the form

(2.19)

confirming the small variability of the function w0. The constants B1 and B2 characterize the intensity of the local load applied, and it is
necessary to consider them as being given. Putting B1 = B2 = Pk�−1/2 (P = const) in relations (2.18), we see that

The magnitude of P determines the intensity of the applied force.

3. Partitioning of the boundary conditions on the short sides and the continuity conditions

We will now consider a procedure for applying the relations obtained to the problem of the bending of a strip by a force P, applied at
a point with coordinates x = c, z = 1. We shall use the asymptotic representation of a concentrated force by expression (2.18) in which b = c
and B1 = B2 = Pk�−1/2. To be specific, we will assume that the ends of the strip at x = 0 and x = 1 are rigidly clamped, that is, at the ends
u = w = 0. In order to satisfy the boundary conditions and the continuity conditions on the line x = c, which the displacements and stresses
must satisfy, we set up, using the elementary solutions (2.6)–(2.8), the necessary expressions for u, w, �x, � in the first approximation

(3.1)

Here, the basic quantity �0 is multiplied by �� with an undetermined exponent � that will be determined from the condition for
the equations for the arbitrarinesses of integration corresponding to the boundary conditions and matching conditions to be solvable.
Multiplication is possible since �0 is a solution of a homogeneous equation. In the second expression, the second term can be neglected
compared with the first as a quantity of the second order of smallness. It is seen that the equations for determining of w0, �0 and u0, �z0
decompose. The matching equations for determining the last two basic quantities do not contain discontinuous functions and are satisfied
identically. The boundary conditions when x = 0 and x = 1, and the continuity condition on the line z = c are now written in the form:for the
functions w0 and �0

(3.2)

(3.3)

for the functions u0 and �z0

(3.4)

(3.5)
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The braces denote that it is necessary to write the expression in them for x ≤ c and x ≥ c and to subtract the first value from the second on
the line x = c.

In relations (3.2) and (3.3), we choose

(3.6)

and only leave the leading terms in the matching conditions. Taking account of Eq. (2.16) in the last of them, the matching conditions (3.3)
can then be written in the form

(3.7)

Hence, for the solution w0 of the form of (2.19), where the representations of the solution for the left-hand and right-hand sides of the
strip with respect to the point x = c each contain four constants, there are four conditions (3.2) at the ends and four matching conditions
(3.3).

By virtue of relation (2.12), the stress �z0 is negligibly small in the boundary conditions (3.4) at the ends of the strip, and the condition
reduces to the requirement that there is no transverse deformation on account of the Poisson effect ��x = ��u′

0 at the clamping position. It
is impossible to satisfy this condition within the framework of the approximation (2.2) being considered. For this, it is necessary to abandon
the constraint that � depends solely on x and does not depend on z (Ref. 3).

In the continuity conditions (3.5), the last condition is a consequence of the penultimate condition and can be discarded. We now note
that the stress �z0 is continuous at the point x = c and all the conditions reduce to the two conditions:

(3.8)

The functions w0 and �0, which satisfy conditions (3.7), have the form

Substituting the now known quantities w0 and �0 into the expression, for example, for �x from relations (3.1), we obtain

The upper value is taken when x ≤ c and the lower value when x ≥ c.
The function u0 satisfying conditions (3.8) has the form

4. The dynamic bend of a strip

We will now use the procedure described above to construct a dynamic submodel of the oscillations of a long strip. Adding the
dimensionless inertial terms to the static bending equations (2.1), we obtain the following equations of motion

(4.1)

The dimensionless operator

has been introduced here, in which � is the specific density of the strip material, t* is the dimensional time, t = t*/T is the dimensionless
time and T is a certain characteristic period of the oscillations of a strip of unit width, length l and height h.

As in the static problem, setting the initial approximations by means of (2.3)–(2.5), we calculate the remaining unknowns in the zeroth
approximation, and w and �, which had earlier been assigned in the zeroth approximation, in the first approximation. This gives;
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in the w-process

in the �-process

in the 0-process

Expressions for the stresses �1 and �z1, calculated in the first approximation, can now be written as the sum of the elementary solutions
obtained in the w-, �- and 0-processes.

Suppose a load q* = q*(x*, t), which can either be a distributed load or a local load, acts on the strip boundary z* = h. In the first
approximation, it is necessary to satisfy the conditions (in dimensionless form)

After substituting the expressions written above for the stresses into these conditions, we obtain the equations for determining the
required unknowns u0, �z0, w0, �0

(4.2)

From the last two equations of (4.2), we find

(4.3)

and we substitute this expression into the last equation of (4.2). We obtain

(4.4)

Eq. (1.1), reduced to dimensionless form,

in the case of a beam of rectangular section (I = 2bh3/3, F = 2bh) when k′ = 2/3, as was recommended in Ref. 7, is essentially identical to Eq.
(4.4) when q = 0. The difference is greater for the largest of the recommended values k′ = 5/6.

Hence, the proposed procedure for constructing a submodel, as applied to the general dynamical equations of the theory of elasticity
for long strip, give the Timoshenko model. This enables us to presume that the method of simple iterations generalizes the intuitive
constructions of Timoshenko and makes the constructive building of models of the Timoshenko-type possible for other systems.
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The last two equations of (4.2) are equivalent to Eq. (4.4) but are considerably more informative than it. The penultimate equation of
(4.2), rewritten in the form

under certain conditions contains wave and singular solutions in �0. The time singularity is to be understood as a shock.
Assuming that the function w0 is a function of zero variability in the coordinates and time, we can represent the solution of Eq. (4.5) in

the form of a sum of the particular solution

and the general solution �g
0. After substituting this sum into Eq. (4.3), we arrive at an equation of motion with an isolated singular part

5. The static flexure of a strip on an elastic base

The conditions �∗ = 0, �∗
z = −q must be satisfied on the upper side of the strip z* = h. The lower side of the strip is in contact with an

elastic base in such a way that �∗
z = −q∗, �∗ = k∗

2 u∗. The coefficients of the bed k∗
1 and k∗

2 are assumed to be specified. In dimensionless
form, these conditions are written as

(5.1)

The notation k1 = k∗
1/E, k2 = k∗

2/E has been introduced here.
We shall satisfy the boundary conditions using the values of the first approximation (2.11) for �z, (2.10) for � and (3.1) for w and u.
Substituting the expressions for the stresses and strains into boundary conditions (5.1), we obtain four equations for determining the

four required quantities w0, �0, u0, �z0

The quantity ��2w′′
0/2 on the right hand side of the third equation can be discarded as a quantity of the second order of small-

ness in � compared with w0. This quantity corresponds to the change in the height of the strip due to the fact that the longitudinal
fibres of the strip are stretched (compressed) under flexure and thin down (thicken) due to the Poisson effect. By virtue of the fact
that k1 � 1,8 the quantities k1(1 − �2)�z0 and k1(1 + �)2��′

0/2 in the same place can be neglected compared the quantities �z0 and
��′

0 on the left-hand side respectively. By making use of the fact that k2 � 1 in the last equation, the quantity k22(1 + �)�0 on the
right-hand side can be neglected compared with �0 on the left-hand side. We now turn our attention to the fact that the quantity
u0, introduced in the 0-process (2.8), is the elongation (shortening) of the middle line of the bar z = 0. This quantity is obviously far
smaller than the transverse displacement of the middle line w0 and the quantity ��u′

0 on the right-hand side of the third equation
can therefore be discarded compared with w0. Finally, after the unimportant quantities have been discarded, the system takes the
form
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Adding and subtracting the first two and the last two equations of the system, we reduce it to the form

(5.2)

We multiply the third equation of the latter system by 1/3 and add it to the second. We obtain the relation

It is seen from relations (2.8) that the quantity u0 is the elongation of the middle line of the strip z = 0 and, correspondingly, the magnitude
of k2�u′

0/3 is small compared with the value of k1w0. We therefore finally have the relation

(5.3)

On substituting this relation into the second equation of system (5.2), we obtain the equation

in one unknown w0.
Having determined w0 from this, from Eqs (5.2) we calculate, for the known w0, the remaining basic unknowns u0, �z0 and �0, in terms

of which all the stresses and strains are calculated using straightforward operations on relations (2.6)–(2.8).
Note that, since k2 � 1, the second term in the first brackets can be neglected. This gives

If the functions w0 and q are functions of zero variability, that is, differentiation with respect to the argument x does not change their
asymptotic order, the second term on the left-hand side and the second term on the right-hand side can be neglected as being small, and
the equation is then identical to the classical equation for the flexure of a beam on an elastic base.

We write the third equation of system (5.2) in the following form in the unknown �0

assuming that the functions w0 and u0 are known. We assume that the function w0 and its derivatives are functions of zero variability.
In accordance with this, we represent the final solution of this equation, written in the unknown �0 in the form of the sum of the particular
solution �p

0 and the general solution �g
0 (when w0 = u0 = 0).

Substituting the expression

into Eq. (5.3), we obtain

If we put k2 = �g
0 = 0 in this equation, we obtain the classical equation for the flexure of a beam on an elastic base. When k2 = 0, the

equation

differs from the classical equation in that it contains a singular term.
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6. The convergence of the method

The required quantities, calculated in Section 2 by the method of simple iterations using relations (2.6), (2.7), (3.1) and (3.6), can be
represented in the first approximation in the form of series in increasing powers of �

Here, the components of the 0-process have not been taken into account since the problem of finding then is separate from the problem
of determining of the components w0 and �0.

We shall seek a solution of the initial Eq. (2.1) in accordance with these expressions, representing each of the required unknowns in
the form of the sum of a slowly varying component and a rapidly varying component. Here, we write the slowly varying component in the
form of an asymptotic series. For example, the displacement w is written as

(6.1)

The slowly varying component of the solution is labelled with the superscript s and the rapidly varying component with the superscript
f. The remaining unknowns are written in a similar manner taking account of the asymptotic relations

We substitute the expressions of the type (6.1) for all of the unknowns into the initial Eq. (2.1). This gives

By individually equating the slowly varying and rapidly varying quantities on both side of the equalities, we obtain seven equations for
determining the slowly varying quantities with a recursive form in order of increasing n
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where quantities with negative supscripts, obtained when n = 0, are equal to zero, and seven equations for determining of the rapidly
varying unknowns

(6.2)

The substitution 	 = x/� has been made in these equations in order that differentiation with respect to 	 does not change the order of
the differentiable quantities.

The first system of equation when n = 0 is easily integrated:

Here, the superscript s is omitted for simplicity. The arbitrary functions of integration �(x), 
(x), �(x) correspond to the functions u0,
�0, fz0 in the solution (2.6)–(2.8). This solution corresponds to the solutions obtained by the method of simple iterations in the w-, �- and
0-processes.

The term in the first equation of system (6.2) with the small factor �2 can be discarded, which considerably simplifies the equations
and enables us to obtain the resolvent equation

The solution of the first equation, which satisfies the condition that there are no shear stresses on the longitudinal edges, is of the
boundary layer type (or, more accurately, a superposition of boundary layers).

where C1n and C2n are constants of integration. The upper value is taken when x ≤ c and the lower value when x ≥ c.
Hence, we see that the solution of the initial problem of the theory of elasticity in the first approximation can be constructed by two

routes. The first solution is obtained by the method of simple iterations. In the second solution, asymptotic series are constructed on the
basis of asymptotic estimates obtained by the method of simple iterations and the calculations are then performed by the method of
asymptotic integration. The second solution is the asymptotic solution and it satisfies the condition of asymptotic convergence, that is, the
requirement that � → �0 when � → 0.

The two solutions are compared by means of an example. For a strip loaded with a concentrated load P at the point with the coordinates
x = c, z = 1, the shear stress �, which satisfies the boundary conditions (2.9) and the matching conditions (3.7), calculated using Eq. (2.16),
has the form

The upper value is taken when x ≤ c and the lower value when x ≥ c.
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The same stress, calculated using expression (6.3), has the form

The upper value is taken when x ≤ c and the lower value when x ≥ c.
The calculations show that, when c = 0.5 m, the difference between the shear stresses obtained using the SI and SIAI methods does not

exceed 5%. The model obtained using the SI method corresponds to the case when only the first term in the expansion in a Fourier series
is taken into account in the more accurate and logically consistent model obtained using the SIAI method. It is customarily assumed that
this corresponds to models of the strength of materials.8
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